

Agenda

- Development of the Innovation Program
- Changing Culture to Support Innovation
- Pilot Projects
 - Plant Initiatives
 - System Initiatives
- Other Research Partners

Created in 2015

Added Research specialist

Started University projects

Technology Scans

LIFT Link

Isle Utilities' TAG meetings

Utility Management Conference

AWWA Annual Conference and Exposition

WEFTEC

WRF 4642

Framework

Direction

Purpose

WRF 4642 Utility Innovation Framework

Results-oriented. Tangible and intangible improvement aligned with leadership and organizational philosophy.

People-oriented. Ideators, mentors, adopters leading initiation and application of innovation.

Ecosystem-oriented.

Environment encouraging growth and maturation of ideas.

Eight Key Business Disciplines

- 1. Visualize maintain a long view that empowers and inspires innovation
- **2. Focus** define challenges that guide investment
- **3. Develop** invest resources in new ideas
- 4. Evaluate test concepts in scaled and relevant applications
- **5. Engage** motivate, enable and reward stakeholders
- **6. Reach** utilize resources outside of the organization
- 7. Communicate capture and convey defining success stories
- **8. Evolve** implement concepts and measure impact

Vision for the Innovation Program

Bringing ideas to life!

OFFICE VISION

To be THE world-class innovation and research program.

OFFICE MISSION

Inspire people to discover, nurture, and apply breakthrough innovations.

OFFICE PRIORITIES

Improve operational efficiency

Empower Employees Increase sustainability of our infrastructure Develop new products and services

Expand our partnerships

Share our knowledge and expertise to benefit the industry

Focus of the Innovation Program

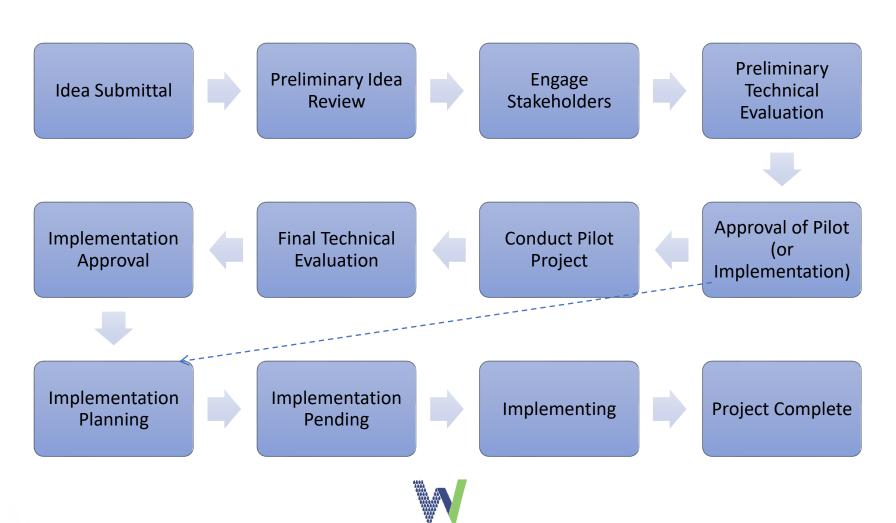
Spend Customer Dollars Wisely Reduce Expenses

Upgrade Sustainability

Improve Efficiency

Transform Employee Engagement

- Engage Employees
- Change culture
- Solve problems


Optimize Infrastructure

- Water and Sewer Pipe Networks
- Water Filtration Plants
- Water Resource Recovery Facilities

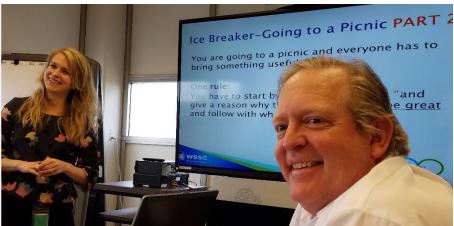
Developing Capability

Idea Tracking Process

Building an Innovative Culture

- Innovation Emails
- Flyers
- Intranet Announcements
- Technology Watch

Employee Engagement


- Innovation Hub
- Workshops
- Innovation Day
- Staff meetings

Communications Plan

Changing Culture – Brain Storming Workshops

Innovation Hub

- Online tool developed though e-Builder for employees to submit new and innovative ideas.
- Process provides:
 - Idea Tracking
 - Expert & End-User Evaluation
 - Pilot or Lab Testing
 - Implementation Support

- Specific Evaluation Criteria
- Level of Impact
- Best Chance of Success

Innovation Day 2019

Innovation Day 2019 Word Cloud

Plant Pilot Projects

- Enhanced Biological Phosphorus Removal
 - Seneca Plant
 - Parkway Plant
- Peracetic Acid Disinfection
 - Parkway Plant
- Bio-filtration
 - Potomac WFP

Enhanced Biological Phosphorus Removal (EBPR)

Challenge:

- Alum for phosphorus removal a major chemical expense (~\$0.9 mil/yr for WSSC)
- Generates inert solids (no methane gas at Piscataway).

Idea:

 Use microorganisms (fermenting PAOs) to remove P.

Enhanced Biological Phosphorus Removal (EBPR)

Method: Fermentation zone

Benefits:

45% drop in alum use ~\$115K/yr

15% reduction solids hauling

Improve Piscataway
Bio-Energy facility
performance

Enhanced Biological Phosphorus Removal (EBPR)

 Pilot testing of sidestream EBPR at full-scale for Parkway – 2020

Peracetic Acid (PAA) Disinfection - Parkway

Challenge:

- Chlorine is used for disinfection (*E. coli*) at Parkway (UV all other plants)
- Creates chlorinated disinfection byproducts (DBPs)
- Requires de-chlorination prior to water return to stream

Idea:

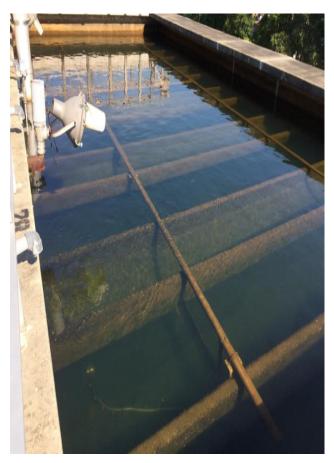
 Use natural chemical, Peracetic Acid, to disinfect wastewater

Peracetic Acid (PAA) Disinfection - Parkway

➤ Pipe Reactor Pilot test 7/16/2018 thru 8/3/2018

Peracetic Acid (PAA) Disinfection - Parkway

BENEFITS


"Organic" chemical Out performs Chlorine **Saves Money**

- Does not persist in environment.
- Lower toxicity to aquatic life.
- Breaks down to acetic acid, CO₂, H₂O.
- More powerful oxidant
- Does not form chlorinated Disinfection By-Products (DBPs)
- No need for dechlorinating agent
- Less maintenance
- Longer shelf-life (9-12 months)
- PAA price continues to drop (new production facilities)

Biofiltration - Potomac Plant

- Problem: Elevated Disinfection Byproducts (DBPs) and Manganese (Mn).
- Impact: Treatment strategies for DBPs & Mn conflict. Biofiltration can reduce chlorine chemical cost & remove more organics than chlorinated filters.
- Status: Ongoing pilot study.
 Converted 2 of 32 filters to biofilters.
 Monitoring key water quality parameters & filter operational performance.

Pipe System Pilot Projects

Trenchless Pipe Rehabilitation

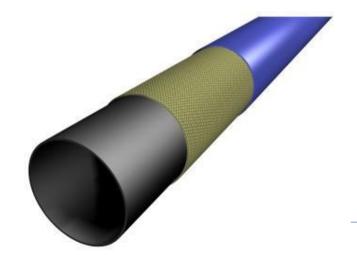
Automated Water System Flushing

Artificial Intelligence for Pipe Condition Assessment

Sewer Condition Monitoring

Sludge Stabilization and Disposal

Pressure Transient Monitoring



Pilot Project: Primus Line

Problem: High Pressure Trenchless Pipe Rehab

Impact: Water or Sewer pipe replacement where location makes work difficult

Status: Contracting with vendor for bridge crossing

Pilot Project: Automated Flushing

- Problem: Low Chlorine Residual, Discolored water complaints
- Automated flushing systems improve water turnover and ensure quality of water delivery
- Status: One standard unit installed; flushing on a timer

Pilot Project: Automated Flushing

- Installing one intelligent unit
 - Monitoring chlorine and turbidity
 - Flushing on measuring low parameters
 - Self sustaining power via internal turbine
 - Different manufacturer

Pilot Project: Al for pipe condition assessment

- Problem: Reduce time to evaluate CCTV
- Impact: Can use Artificial Intelligence to evaluate CCTV video and track changes over time
- Status: Preliminary discussions with vendors

Pilot Project: ADS ECHO Sewer Assessment

Problem: Pipe Blockage Assessment

Impact: Optimize maintenance schedule for sewer

mains; predict blockages with Al

Status: Installation soon in sewer network

Pilot Project: Drone Technology

Problem: Assessing Remote Areas Quickly

Impact: Drones have the potential to help with

activities like trunk walks, emergency leak

investigations, routine monitoring, and

quality sampling

Status: Pilot will start soon for trunk walks

28

water

Pilot Project: Metaflo Soil Stabilizer

Problem: Disposal of wet sludge from vac trucks

Impact: Solidifying sludge will allow for disposal of vac

truck sludge in Depot Spoils bins, potentially

saving time and money.

Status: Pilot complete, economic evaluation ongoing

Pilot Project: Pressure Transient Monitoring

Problem: Pressure transients can increase WM breaks

Impact: Identifying and mitigating pressure transients in

our system has the potential to reduce water

main breaks and extend the life of our pipe.

Status: Pilot testing of Syrinix is ongoing.

Research Partners – External Reach

- Virginia Tech
 - CAWRI; corrosion/discolored water
- Rutgers University
 - Biofiltration; other proposals forthcoming
- Dalhousie University Biofiltration
- University of Kansas Supported rDON proposal
- Bucknell University Bio-Energy
- JHU PAA pilot; Shared algae data; algae sampling
- UMD PCB data

Research Partners – External Reach

(Continued)

- Black and Veatch EBPR
- Arcadis Biofiltration; innovation program
- Stantec PAA Disinfection
- Brown and Caldwell Biogas proposal

Questions?

keith.tyson@wsscwater.com

